CRANE BS&U supporting the Building Services Industry

Andy Lucas
Technical Development Manager CRANE BS&U
Crane Co founded in 1855 by Richard Teller Crane who made the following resolution -

“I am resolved to conduct my business in the strictest honesty and fairness; to avoid all deception and trickery; to deal fairly with both customers and competitors; to be liberal and just towards employees; and to put my whole mind upon the business”

Crane Limited founded in Ipswich in 1919
Crane Building Services & Utilities created 2009
CRANE BUILDING SERVICES & UTILITIES

Building Services

brownall

NABIC

RHODES

Wade

CRANE FLUID SYSTEMS

Gas Utilities

WASK

SPERRY GAS CONTROLS

Water Utilities

VIKING JOHNSON

POSIFLEX

Helden
CRANE BS&U 2010 sales £110m
industry organisations

- CIBSE
- SoHPE
- BSRIA
- CSA
VARIABLE FLOW SYSTEMS

incorporating

DPCVs

CIBSE approved CPD

Andy Lucas
Technical Development Manager CRANE BS&U
VARIABLE FLOW SYSTEMS

Objective
To give an overview of Variable Flow System design and commissioning using Differential Pressure Control Valves

This applies to both heating and chilled water systems
Drivers of Change

- driven by Government legislation
- energy conservation
- subsequent CO$_2$ emissions

The move from constant to variable flow design can give up to 80% pump energy savings; about 6 - 8% total energy saving
Constant volume flow systems

- fixed speed pumps – no energy saving for part load
- constant volume of water is pumped around the system
- 3 or 4 port control valve diverts water through by-pass
- commissioned by proportional balancing or by the use of constant flow regulators – ABV (Automatic Balancing Valves)
Constant flow

constant amount of water pumped around a system controlled by 3 or 4 port control valves and would be

• through terminal
Constant flow

constant amount of water pumped around a system controlled by 3 or 4 port control valves and would be

• through terminal
• split between terminal and by-pass
Constant flow

constant amount of water pumped around a system controlled by 3 or 4 port control valves and would be

- through terminal
- split between terminal and by-pass
- diverted back if not required
Variable volume flow systems

- variable speed pumps – energy saving for part load
- variable volume of water to match demand
- diversity factor
- 2 port control valve
- commissioned by combination of:
 - proportional balancing
 - DPCV – Differential Pressure Control Valves
Variable flow

open
Variable flow

open

modulating between open and closed
Variable flow

open

modulating between open and closed

closed
Pump energy saving

Maximum load operating point

as system demand change, flow rate is changed by varying speed of pump

direct relationship between pump speed and flow rate:

50% pump speed = 50% flow rate

50% flow rate = over 85% energy saving

minimum flow rate approx 20%
DPCVs to protect 2 port control valves

to enable modulating 2 port control valves to operate with an acceptable authority, a DPCV is installed to limit the pressure differential against which the 2 port valves have to close. The installation of DPCVs on sub-branches with 2 port control valves is therefore essential to achieve good control, as well as to avoid noise or cavitation.

DPCV holds pressure constant between points A and B
Installation of 2 port control valves

due to fluctuating system pressures created by the 2 port control valves opening & closing, consideration needs to be given to valve authority.

valve authority is;

• is ability of the control valve to control flow
• is calculated by dividing the pressure drop across the 2 port at design flow by the pressure drop at no flow
• should not be below 0.3
• higher authority gives better flow control

the installation of Differential Pressure Control Valves (DPCV) protects the 2 ports from the fluctuating/rising pressures
Installation of 2 port control valves

example without DPCV

valve authority $\beta = \frac{\Delta p \text{ across 2 port}}{\Delta p \text{ across circuit}}$

$\beta = \frac{20 \text{ kPa}}{80 \text{ kPa}} = 0.25$

always given as a decimal

too low - unacceptable

at design flow rate
Installation of 2 port control valves

example with DPCV fitted

valve authority $\beta = \frac{\Delta p \text{ across 2 port}}{\Delta p \text{ across circuit}}$

$\beta = \frac{20 \text{ kPa}}{40 \text{ kPa}}$

$\beta = 0.5$

acceptable

controlled by DPCV

at design flow rate
Installation of 2 port control valves

position of DPCV?

valve authority $\beta = \frac{\Delta p \text{ across 2 port}}{\Delta p \text{ across circuit}}$

$\beta = \frac{20 \text{ kPa}}{25 \text{ kPa}}$

$\beta = 0.8$

position can influence authority on single terminal circuits – as closes as possible to control valves gives higher authority at design flow rate
Installation of 2 port control valves

for good modulating control the control valve needs to achieve equal percentage characteristic i.e. a characteristic that mirrors the characteristic of the coil.
equal percentage control valves will only operate with near to an equal percentage characteristic where authority, β, is greater than 0.3

with $\beta = 1$

mirror image of coil characteristic

50% valve opening = 50% heat output

flow rate reduces to 20%
equal percentage control valves will only operate with near to an equal percentage characteristic where authority, β, is greater than 0.3

with $\beta = 1$

mirror image of coil characteristic

authority is reduced as pressure drop increases
equal percentage control valves will only operate with near to an equal percentage characteristic where authority, β, is greater than 0.3

with $\beta = 1$

mirror image of coil characteristic

effect of reduction in β to 0.3
DPCV – operating principle

- Upper chamber
- Lower chamber
- 2 Port
- Rising pressure closes DPCV
for any flow rate there is only one possible pressure drop between any 2 points

the DPCV identifies the 2 points by the connecting impulse tube

setting the DPCV to control Δp (pressure drop) between A & B at 100% DFR controls flow rate between these 2 points
System layout – position of DPCV

Branches are broken down into sub-circuits, each controlled by a DPCV
System layout – position of DPCV

Branches are broken down into sub-circuits, each controlled by a DPCV

Note: each circuit must only flow through a single DPCV
Commissioning features around DPCVs

A ‘Companion Valve’ (FODRV) should be installed so that the DPCV can be adjusted until the required design flow rate is achieved. If required, pressure test points could be installed so that the pressure controlled by the DPCV can be measured and recorded.
Differential pressure sensors

to control pump speed, differential pressure sensor should be located across the most remote DPCV controlled sub-branch with additional sensors on branches that might become the index circuit under part load conditions.

test points to check sensor

by-pass with isolating valve should be included to allow the differential pressure to be checked and zeroed

sensor
Differential pressure sensors

to control pump speed, the differential pressure sensor sends signal to BMS which varies pump speed
Minimum flow

at maximum pump turndown, typically 10 - 20%, consideration needs to be given to branches to ensure

- pump flow at minimum load
- circulation of water treatment
- ready supply of heating/chilled water
Minimum flow

possible solution

end terminal could have a 3 or 4 port control valve

➢ on larger circuits additional 3 or 4 ports could be added
Minimum flow

possible solution

a constant flow regulator (ABV) could be used
Minimum flow

possible solution

a pressure relief valve could be installed
Minimum flow

possible solution

a RADPCV (Reverse Acting DPCV) could be used
Commissioning Variable Flow Systems

because each sub-circuit is separated by a DPCV from fluctuating system pressure & therefore holds a constant pressure within the sub-circuit, commissioning sub-circuits can be carried out totally independently.

sub-circuits are independent of each other
Commissioning Variable Flow Systems

Commissioning within the sub-circuits is carried out by ‘proportional balancing’ in the conventional manner.
Commissioning Variable Flow Systems

Each sub-circuit is balanced by measuring flow thro the ‘Companion Valve’ and adjusting DPCV to regulate flow.

commissioning valve normally fully open
Commissioning Variable Flow Systems

for circuits nearer the pump the regulating function of the commissioning valve may be used to reduce the pressure drop across the DPCV to bring it into a better operating position, ie splits residual pressure
To summarise

- change in system design to variable flow controlled by 2 port control valve resulting in pump energy saving
- fluctuation in system pressure undermines control valve authority
- DPCV installed into sub-circuits to ‘protect’ control valves from fluctuating pressure to maintain control valve authority
- provision for pump turndown, typically 10 – 20%
- terminal units commissioned by conventional proportional method
- branches commissioned by use of ‘Companion’ Valve & DPCV
- branches commissioned independently of each other
- pressure sensors used to set pump speed
VARIABLE FLOW SYSTEMS
incorporating
DPCVs

Written by
Andy Lucas
Technical Development Manager CRANE BS&U